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Generation of partially coherent vortex bottle beams
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Intensity distribution of the partially coherent Bessel vortex beams focused by an aperture lens is inves-
tigated. It is found that the intensity distribution in the neighborhood of the geometrical focus is not
only dependent on the topological charge and the radial frequency of the incident partially coherent Bessel
vortex beam, but also on its coherence length. Based on this, the desired partially coherent vortex bottle
beams can be obtained by choosing appropriate values of parameters. Because such bottle beams possess
characteristics of low coherence and vortex, it may be used in microscopic particles guiding, trapping, and
inducing rotation.

OCIS codes: 050.1970, 030.1640, 999.9999 (vortex bottle beam).

In recent years, there have been increasing interests in
the generation of an optical bottle beam, in which a dark
focus is surrounded by regions of higher intensity[1−11].
Various applications of a bottle beam in atom guid-
ing, atom trapping, and optical tweezers have been
explored[1−3]. In a blue-detuned bottle beam, the atoms
are guided to the dark or the low-field region and ma-
nipulated in the dark center[1], and the storage time
can approach the order of 1 s[3]. Several techniques for
generating an optical bottle beam were also described.
Kaplan et al. proposed a new scheme for constructing
a single-beam dark optical trap that minimizes light-
induced perturbations of the trapped atoms[6]. Yelin
et al. presented an optical setup for generating three-
dimensional (3D) dark focus[7]. Recently, a new method
for generating partially coherent bottle beams has been
presented[8]. In addition, it is well recognized that an
optical vortex beam with a helical phase structure of
exp (inφ), where n represents the topological charge and
φ is the azimuthal angle, carries orbital angular momen-
tum (OAM)[12]. Such beam was also applied to induce
rotation of particles due to the transfer of OAM from
the light to the particles[13]. Here, we notice that all the
techniques for generating partially coherent bottle beams
above do not take into account the beams carrying opti-
cal vortex. Can partially coherent vortex bottle beams
be generated by focused partially coherent high order
Bessel vortex beams? This question is interesting, be-
cause the vortex bottle beams of low coherence may show
some advantages over those of complete coherence[14] and
possess the characteristics of the optical vortex. In this
letter, we present a novel method for generation of par-
tially coherent vortex bottle beams. It is shown that the
size of dark focus is adjustable by modulating the spatial
coherence length and the topological charge etc..

Suppose that a partially coherent high order Bessel
vortex beam is incident upon an aperture lens with full
width 2a and focal length f at the z = −f plane, as
shown in Fig. 1. The field distribution of the high order
Bessel vortex beams in the polar coordinate system is
written as[15,16]

E(0)(r, ω) = E0Jn (αr) exp(inφ) exp(iωt) exp(iβ),

n = 1, 2, 3, · · · , (1)

where Jn is the nth-order Bessel function of the first kind,
r is the position vector of a point p in the aperture lens,
α is a radial frequency, and β is an arbitrary phase (as a
spatially distributed random variable).

The cross-spectral density of a partially coherent wave
field can be written as

W (0)(r1, r2, ω) = 〈E∗(r1, ω)E(r2, ω)〉 , (2)

where the angle bracket denotes an ensemble average
monochromatic realization of the field. Substituting
Eq. (1) into Eq. (2) and using Gaussian-Schell coherent
model[17], we obtain the expression for the cross-spectral
density in the z = −f plane

W (0)(r1, r2, z = −f) = E2
0Jn (αr1)Jn (αr2)

× exp
[
− (r1 − r2)

2
/

2σ2
]
exp [−in(φ1 − φ2)] , (3)

where σ is the transverse coherence length, E0 the con-
stant amplitude factor.

According to the generalized Huygens-Fresnel
diffraction integral, the cross-spectral density in the
focused field can be expressed as[17]

Fig. 1. Notation relating to the aperture-lens system.
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where k = 2π/λ is the wave number, and the integral is
over the whole aperture. A, B, C, and D are elements of
the following matrix ABCD

(
A B
C D

)
=

( −z/f z + f
−1/f 1

)
. (5)

By use of the following formulae[18,19]

exp
[
ikr′r
B

cos(φ′ − φ)
]

=
∞∑

l=−∞
ilJl

(
kr′r
B

)
exp[il(φ′ − φ)], (6)
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, (7)

∫ 2π

0

exp(imφ)dφ =
{

2π if m = 0
0 if m �= 0 , (8)

we obtain the expression for the cross-spectral density of
the focused field
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Here, letting r′1 = r′2 = r′, φ′
1 = φ′

2 = φ′ in Eq. (9), the
analytical expression for the intensity distribution of the

focused field is given by
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where ρ′ = r′/a and ρ = r/a are relative polar radius,
Δz = z/f is relative axial distance, Γ (|n + l| + m + 1)
is the gamma function, N = a2/λf is the Fresnel num-
ber viewed from the geometrical focus, and σg = σ/a
is the normalized coherence length. From Eq. (10), We
find that the intensity distribution of the focused field
depends on the radial frequency α, Fresnel number N ,
normalized coherence length σg, and topological charge
n.

Based on above equations, we can perform the numer-
ical calculation. By choosing the suitable values of α,
σg, and n, we may achieve the desired intensity distribu-
tion near the focus. Figures 2(a)—(d) give the intensity
distribution near the geometrical focus for different topo-
logical charges n (n = 1, 2, 3, and 4, respectively). In Fig.
2, the more whiteness indicates the higher intensity (the
same applies to the other figures). We find that a dark
focus surrounded by higher intensities is achieved. The
beam having this kind of dark focus is called a bottle
beam. Since the incident beam is partially coherent and

Fig. 2. Simulation for the optical field distribution near the
geometrical focus for different values of topological charge
n. (a) n = 1, (b) n = 2, (c) n = 3, (d) n = 4. α = 1,
σg = 0.5, and other parameters are f = 100 mm, λ = 0.6328
μm, N = 40.
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carrying optical vortex, the generated beam with a dark
focus may appropriately be called a partially coherent
vortex bottle beam. Figure 2 shows that both transverse
and longitudinal dimensions of the dark focus change
with the increment of the topological charge n. The
transverse intensity surrounding the dark focus increases
and the longitudinal intensity surrounding the dark focus
decreases with the increase of n, respectively.

In Figs. 3(a)—(d), we plot the intensity distribution
near the geometrical focus for different values of the nor-
malized coherence length σg (σg = 0.8, 1.5, 2, and 2.5,
respectively). The topological charge is chosen as n = 1.
We readily find that both transverse and longitudinal di-
mensions of the dark focus increase lentamente with the
increment of σg. It is also found that the transverse in-
tensity surrounding the dark focus increases and the lon-
gitudinal intensity surrounding the dark focus decreases
with the increase of σg, respectively. Especially, for the
high coherence (see Fig. 3(d)) or the large topological
charge case (see Fig. 2(d)), the intensity ring surround-
ing the dark focus produces a pair of low-intensity gaps
in the axis. Based on this characteristic, we may present
a novel approach that the atoms are guided from the
low-intensity gaps to the dark focus region and can be
trapped in the dark center by decreasing the σg.

In Figs. 4(a)—(d), we plot the intensity distribution
near the geometrical focus for different values of the ra-
dial frequency α (α = 0.5, 0.8, 1, and 1.5, respectively).
It is found that both transverse and longitudinal dimen-
sions of the dark focus increase with the increment of α.
This property can also be used to control the dimensions
of the dark focus. Especially, for the case of α = 0.5 (see
Fig. 4(a)), the intensity surrounding the dark focus is
much more uniform than for other case. The transverse
size Dr and the longitudinal size Dz of the dark focus as
a function of σg for different values of α are presented
in Fig. 5. It is shown that for a fixed σg, the larger the
value of α is, the wider the transverse size of the dark
focus is, and also the longitudinal size is; and for a fixed
α and σg ≥ 0.5, the transverse size and the longitudinal
size of the dark focus change lentamente or keep invari-
ance with the increment of σg.

Fig. 3. Simulation for the optical field distribution near the
geometrical focus for different degrees of coherence σg. (a)
σg = 0.8, (b) σg = 1.5, (c) σg = 2, (d) σg = 2.5. α = 0.5,
n = 1, other parameters are the same as in Fig. 2.

Fig. 4. Simulation for the optical field distribution near
the geometrical focus for different radial frequencies α. (a)
α = 0.5, (b) α = 0.8, (c) α = 1, (d) α = 1.5. σg = 1, n = 1,
other parameters are the same as in Fig. 2.

Fig. 5. Longitudinal size Dz and transverse size Dr of the
dark focus as functions of σg for different radial frequencies
α. n = 1, other parameters are the same as in Fig. 2.

The behaviors of the intensity distribution mentioned
above can be understood easily. It is known that the dark
vortex core (i.e., the dark core of the intensity profiles)
in the focal region increases with increasing σg or n,
and for low coherence case, the core fills with diffuse
light[15,16,19]. As shown above, for the σg < 0.4 case (see
Fig. 5, n = 1), the dark focus disappeared. However,
with increasing σg or n, the vortex bottle beam and its
low-intensity gaps in the optical axis can be generated in
the focal region.

In conclusion, we have investigated the 3D intensity
distribution of the partially coherent Bessel vortex beams
focused by an aperture lens. It has been shown that the
intensity distribution in the neighborhood of the geomet-
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rical focus is not only dependent on the topological charge
and the radial frequency of the incident partially coher-
ent Bessel vortex beam, but also on its coherence length.
Based on this point, a novel method was presented for
achieving a dark focus surrounded by higher intensity.
Namely, by modulating the coherence length, radial fre-
quency, and the topological charge, we can produce the
dark focus of desired size. It is well known that partially
coherent Bessel vortex beams possess some advantages,
such as low sensitivity to speckle and vortex characteris-
tic etc.. Therefore, the generated dark focus may be used
in microscopic particles guiding, trapping, and inducing
rotation.
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